Boolean Factor Analysis of Multi-Relational Data

Marketa Krmelova, Martin Trnecka

DAMOL
DATA ANALYSIS AND MODELING LAB

Palacký University, Olomouc, Czech Republic

INVESTMENTS IN EDUCATION DEVELOPMENT
Motivation

- The Boolean factor analysis (BFA) is an established method for analysis and preprocessing of Boolean data.
- The basic task in the BFA: find new variables (factors) which explain or describe original single input data.
- Finding factors is an important step for understanding and managing data.
- Boolean nature of data is in this case beneficial especially from the standpoint of interpretability of the results.
- BFA is suitable for single input Boolean data table with just one relation between objects and attributes.
- Many real-world data sets are more complex than a simple data table.
- We propose new approach to the BFA, which is tailored for multi-relational data.
Multi-Relational Data

- Usually, they are composed from many data tables, which are interconnected by relations.
- Relations are crucial.
- Represent additional information about the relationship between data tables.
- This information is important for understanding data as a whole.
- Example: Social networks, Dating agency database.
Boolean Factor Analysis

- Consider an $n \times m$ object-attribute matrix $C$ with entries $C_{ij} \in \{0, 1\}$ expressing whether an object $i$ has an attribute $j$ or not.
- The goal of the BMF is to find decomposition

$$C = A \circ B$$

of $C$ into a product of an $n \times k$ object-factor matrix $A$ over $\{0, 1\}$, a $k \times m$ factor-attribute matrix $B$ over $\{0, 1\}$.
- The product $\circ$ in (4) is a Boolean matrix product, defined by

$$(A \circ B)_{ij} = \bigvee_{l=1}^{k} A_{il} \cdot B_{lj},$$

where $\bigvee$ denotes maximum (truth function of logical disjunction) and $\cdot$ is the usual product (truth function of logical conjunction). For example the following matrix can be decomposed into two Boolean matrices with $k < m$.

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \circ \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
Boolean Factor Analysis via FCA

- An optimal decomposition of the Boolean matrix can be found via FCA.
- Factors are represented by formal concepts.
- The aim is to decompose the matrix $C$ into a product $A_{\mathcal{F}} \circ B_{\mathcal{F}}$.

$$\mathcal{F} = \{\langle A_1, B_1 \rangle, \ldots, \langle A_k, B_k \rangle\} \subseteq \mathcal{B}(X,Y,C),$$

where $\mathcal{B}(X,Y,C)$ represents set of all formal concepts of context $\langle X,Y,C \rangle$. Denote by $A_{\mathcal{F}}$ and $B_{\mathcal{F}}$ the $n \times k$ and $k \times m$ binary matrices defined by

$$(A_{\mathcal{F}})_{il} = \begin{cases} 1 & \text{if } i \in A_l \\ 0 & \text{if } i \notin A_l \end{cases} \quad (B_{\mathcal{F}})_{lj} = \begin{cases} 1 & \text{if } j \in B_l \\ 0 & \text{if } j \notin B_l \end{cases}$$

for $l = 1, \ldots, k$. In other words, $A_{\mathcal{F}}$ is composed from characteristic vectors $A_l$. Similarly for $B_{\mathcal{F}}$. The set of factors is a set $\mathcal{F}$ of formal concepts of $\langle X,Y,C \rangle$, for which holds $C = A_{\mathcal{F}} \circ B_{\mathcal{F}}$. For every $C$ such a set always exists.

- Because a factor can be seen as a formal concept, we can consider the intent part (denoted by $\text{intent}(F)$) and the extent part (denoted by $\text{extent}(F)$) of the factor $F$. 

Krmelova M., Trnecka M. (DAMOL)
Boolean Factor Analysis of Multi-Relational Data

- Our settings: We have two Boolean data tables $C_1$ and $C_2$, which are interconnected with relation $\mathcal{R}_{C_1C_2}$.
- This relation is over the objects of first data table $C_1$ and the attributes of second data table $C_2$, i.e. it is an objects-attributes relation.
- In general, we can also define an objects-objects relation or an attributes-attributes relation.
- Our goal: is to find factors, which explain the original data and which take into account the relation $\mathcal{R}_{C_1C_2}$ between data tables.

**Definition**

Relation factor (pair factor) on data tables $C_1$ and $C_2$ is a pair $\langle F^i_1, F^j_2 \rangle$, where $F^i_1 \in \mathcal{F}_1$ and $F^j_2 \in \mathcal{F}_2$ ($\mathcal{F}_i$ denotes set of factors of data table $C_i$) and satisfying relation $\mathcal{R}_{C_1C_2}$.

- There are several ways how to define the meaning of “satisfying relation” from Definition.
Narrow Approach

- $F^i_1$ and $F^j_2$ form pair factor $\langle F^i_1, F^j_2 \rangle$ if holds:

$$\bigcap_{k \in \text{extent}(F^i_1)} \mathcal{R}_k \neq \emptyset \text{ and } \bigcap_{k \in \text{extent}(F^i_1)} \mathcal{R}_k \subseteq \text{intent}(F^j_2),$$

where $\mathcal{R}_k$ is a set of attributes, which are in relation with an object $k$.

- This definition holds for an object-attribute relation, other types of relations can be defined in similar way.
Wide Approach

- $F^i_1$ and $F^j_2$ form pair factor $\langle F^i_1, F^j_2 \rangle$ if holds:

$$\left( \bigcap_{k \in \text{extent}(F^i_1)} \mathcal{R}_k \right) \cap \text{intent}(F^j_2) \neq \emptyset.$$

- This definition holds for an object-attribute relation, other types of relations can be defined in similar way.
For any $\alpha \in [0, 1]$, $F_1^i$ and $F_2^j$ form pair factor $\langle F_1^i, F_2^j \rangle$ if holds:

$$\frac{\left| \bigcap_{k \in \text{extent}(F_1^i)} R_k \right| \cap \text{intent}(F_2^j)}{\left| \bigcap_{k \in \text{extent}(F_1^i)} R_k \right|} \geq \alpha.$$ 

This definition holds for an object-attribute relation, other types of relations can be defined in similar way.

It is obvious, that for $\alpha = 0$ and replacing $\geq$ by $>$, we get the wide approach and for $\alpha = 1$, we get the narrow one.

**Lemma**

For $\alpha_1 > \alpha_2$ holds, that a set of relation factors counted by $\alpha_1$ is a subset of a set of relation factors obtained with $\alpha_2$. 

Krmelova M., Trnecka M. (DAMOL) Boolean Factor Analysis of Multi-Relational Data October 16, 2013 9 / 21
Simple Example

Let us have two data tables $C_W$ and $C_M$. $C_W$ represents women and their characteristics and $C_M$ represents men and their characteristics.

<table>
<thead>
<tr>
<th></th>
<th>athlete</th>
<th>undergraduate</th>
<th>wants kids</th>
<th>is attractive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abby</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Becky</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claire</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Daphne</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>athlete</th>
<th>undergraduate</th>
<th>wants kids</th>
<th>is attractive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Ben</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Carl</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Dave</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>athlete</th>
<th>undergraduate</th>
<th>wants kids</th>
<th>is attractive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abby</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Becky</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claire</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Daphne</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Moreover, we consider relation $R_{CWC_M}$ between the objects of first the data table and the attributes of the second data table. In this case, it could be a relation with meaning “woman looking for a man with the characteristics”.

Krmelova M., Trnecka M. (DAMOL)  
Boolean Factor Analysis of Multi-Relational Data  
October 16, 2013 10 / 21
Factors Obtained via \texttt{GRECOND} Algorithm

Factors of data table $C_W$ are:
- $F_W^1 = \langle\{\text{Abby, Daphne}\}, \{\text{undergraduate, wants kids, is attractive}\}\rangle$
- $F_W^2 = \langle\{\text{Becky, Daphne}\}, \{\text{athlete, wants kids}\}\rangle$
- $F_W^3 = \langle\{\text{Abby, Claire, Daphne}\}, \{\text{undergraduate, is attractive}\}\rangle$

Factors of data table $C_M$ are:
- $F_M^1 = \langle\{\text{Ben, Carl}\}, \{\text{undergraduate, wants kids}\}\rangle$
- $F_M^2 = \langle\{\text{Adam}\}, \{\text{athlete, is attractive}\}\rangle$
- $F_M^3 = \langle\{\text{Adam, Carl}\}, \{\text{athlete}\}\rangle$
- $F_M^4 = \langle\{\text{Dave}\}, \{\text{wants kids, is attractive}\}\rangle$
Joint Factors Into Relational Factors

- We use so far unused relation $R_{CWCM}$, between $CW$ and $CM$ to joint factors of $CW$ with factors of $CM$ into relational factors. For the above defined approaches we get results which are shown below. We write it as binary relations, i.e $F^i_W$ and $F^j_M$ belongs to relational factor $\langle F^i_W, F^j_M \rangle$ iff $F^i_W$ and $F^j_M$ are in relation:

<table>
<thead>
<tr>
<th>Narrow approach</th>
<th>Wide approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F^1_W$</td>
<td>$F^1_M$</td>
</tr>
<tr>
<td>$F^2_W$</td>
<td>×</td>
</tr>
<tr>
<td>$F^3_W$</td>
<td>×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.6-approach</th>
<th>0.5-approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F^1_W$</td>
<td>$F^1_M$</td>
</tr>
<tr>
<td>$F^2_W$</td>
<td>×</td>
</tr>
<tr>
<td>$F^3_W$</td>
<td>×</td>
</tr>
</tbody>
</table>
Interpretation

The relational factor in form $\langle F^i_W, F^j_M \rangle$ can be interpreted in the following ways:

- Women, who belong to extent of $F^i_W$ like men who belong to extent of $F^j_M$. Specifically in this example, we can interpret factor $\langle F^1_W, F^1_M \rangle$, that Abby and Daphne should like Ben and Carl.

- Women, who belong to extent of $F^i_W$ like men with characteristic in intent of $F^j_M$. Specifically in this example, we can interpret factor $\langle F^1_W, F^1_M \rangle$, that Abby and Daphne should like undergraduate men, who want kids.

- Women, with characteristic from intent $F^i_W$ like men who belong to extent $F^j_M$. Specifically in this example, we can interpret factor $\langle F^1_W, F^1_M \rangle$, that undergraduate, attractive women, who want kids should like Ben and Carl.

- Women, with characteristic from intent $F^i_W$ like men with characteristic in intent of $F^j_M$. Specifically in this example, we can interpret factor $\langle F^1_W, F^1_M \rangle$, that undergraduate, attractive women, who want kids should like undergraduate men, who want kids.
Interpretation

- Interpretation of the relation between $F^i_W$ and $F^j_M$ is driven by used approach.
- If we obtain factor $\langle F^i_W, F^j_M \rangle$ by narrow approach, we can interpret relation between $F^i_W$ and $F^j_M$: “women who belong to $F^i_W$, like men from $F^j_M$ completely”. For example factor $\langle F^1_W, F^1_M \rangle$ can be interpreted: “All undergraduate attractive women, who want kids, wants undergraduate men, who want kids.”
- If we obtain factor $\langle F^i_W, F^j_M \rangle$ by wide approach, we can interpret the relation between $F^i_W$ and $F^j_M$: “women who belong to $F^i_W$, like something about the men from $F^j_M$”. For example $\langle F^2_W, F^1_M \rangle$ can be interpreted: “All athlete woman, who want kids, like undergraduate men or man, who want kids.”
- If we get $\langle F^i_W, F^j_M \rangle$ by $\alpha$-approach with value $\alpha$, we interpret the relation between $F^i_W$ and $F^j_M$ as: “women from $F^i_W$, like men from $F^j_M$ enough”, where $\alpha$ determines measurement of tolerance.
Remark

- Not all factors from data tables $C_W$ or $C_M$ must be present in any relational factor.
- In this case, we can add these simple factors to the set of relational factors and consider two types of factors. This factors are not pair factors, but classical factors from $C_W$ or $C_M$. Of course this depends on a particular application.
Another Approach

- Simpler approach to multi-relational data factorization is such, that we do factorization of the relation $R_{C_1C_2}$. This is correct because we can imagine the relation between data tables $C_1$ and $C_2$ as another data table.

- For each factor, we take the extent of this factor and compute concept in $C_1$, which contains this extent. Similarly for intents of factors and concepts in $C_2$. For example one of the factors of $R_{C_WC_M}$ from example is:

  $$\langle \{\text{Becky, Daphne}\}, \{\text{athlete, wants kids}\}\rangle.$$ 

Relational factor computed from this factor will be

$$\langle \langle \{\text{Becky, Daphne}\}, \{\text{athlete, wants kids}\}\rangle, \langle \{\text{Carl}\}, \{\text{athlete, undergraduate, wants kids}\}\rangle\rangle.$$ 

- This approach seems to be better in terms of that we get pair of concepts for every factors, but we do not get an exact decomposition of data tables $C_1$ and $C_2$. Moreover this approach can not be extended to $n$-ary relations.
n-tuple relational factors

- Above approaches (Narrow, Wide, $\alpha$-approach) can be generalized for more than two data tables.
- In this generalization, we do not get factor pairs, but generally factor $n$-tuples.

**Definition**

Relation factor on data tables $C_1, C_2, \ldots C_n$ is a n-tuple

$$\langle F_1^{i_1}, F_2^{i_2}, \ldots F_n^{i_n} \rangle,$$

where $F_j^{i_j} \in F_j$ where $j \in \{1, \ldots, n\}$ ($F_j$ denotes set of factors of data table $C_j$) and satisfying relations $R_{C_lC_{l+1}}$ or $R_{C_{l+1}C_l}$ for $l \in \{1, \ldots, n-1\}$. 
Example

- Data table $C_P$ represents people and their characteristic, $C_R$ represents restaurants and their characteristics and $C_C$ represents which ingredients are included in national cuisines.

- Relation $\mathcal{R}_{CPCC}$ represents relationship “person likes ingredients” and relation $\mathcal{R}_{CRCC}$ represents relationship “restaurant cooks national cuisine”.

- One of the relational factors, which we get by 0.5-approach, is $\langle F^1_P, F^{11}_C, F^3_R \rangle$ and could be interpreted as “men would enjoy eating in luxury restaurants where the meals are cheap”. Another factor is $\langle F^3_P, F^2_C, F^1_R \rangle$ and could be interpreted as “women enjoy eating in ordinal cheap restaurants”.

- We can represent the relational factors via graph ($n$-partite).
In this work we present the new approach to BMF of multi-relational data, i.e. data which are composed from many data tables and relations between them.

This approach, as opposed from to BMF, takes into account the relations and uses these relations to connect factors from individual data tables into one complex factor, which delivers more information than the simple factors.
Future Research

- Generalization multi-relational Boolean factorization for ordinal data, especially data over residuated lattices
- Design an effective algorithm for computing relational factors.
- Develop new approaches for connecting factors which utilize statistical methods and last but not least drive factor selection in the second data table
- Using information about factors in the first one and relation between them, for obtaining more relevant data
Thank you.